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Abstract—Variational Auto-encoders (VAE’s) have become a

popular deep learning model to extract features from images,

as well as to transfer the style of one image onto other images.

Recent work with VAE’s have included the extraction of relevant

features from cancer transcriptomes, in addition to predicting

what cancer cells may look like in response to chemotherapy. We

utilized the Blood Cell Cancer data set from M Amir Eshraghi

in an attempt to extract features from malignant preB blood

cell cancer images and transfer it onto benign blood cell cancer

images to generate images that predict the progression of blood

cell cancer in the long-run. The hyper parameter temperature

was introduced to the reparameterize function of our VAE

to influence the distribution of its latent space and generate

more probable images. Various values for the temperature were

evaluated to determine which one would perform the best for

our model. Our findings could help pave the way for effective

cancer progression tools, as well as generating new image data

that could be used in future work related to blood cell cancer

and deep learning.

I. INTRODUCTION

Variational Auto-Encoders (VAE’s) are a probabilistic form

of auto-encoders, which work by reducing features of an image

down to a latent space and then constructing images based on

those latent features. In this, we will investigate the usage of

VAE’s on blood cell images, both benign and malignant. The

variational autoencoder model is shown in 1

Fig. 1: Model of the autoencoder courtesy of [1]

The probability spaces in the encoder are Gaussian distribu-

tions, and estimates are constructed through training of these

spaces. An important feature of the system is the global

noise, or variation across the distribution. In [2], the authors

introduce the ”local reparameterization trick” to model this

instead as local noise, allowing for better performance during

backpropogation. The vanishing gradient problem is prevelant

in this model, and the reparameterization helps minimize this

by introducing an artificial noise parameter, denoted ϵ.

II. PREVIOUS WORK

Cancer prediction in the medical field is of immense sig-

nificance because of the implications of the prediction to the

patient. The ability to accurately predict the progression of
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cancer in a patient is directly correlated to the early detection

and timely treatment of said patient. Due to the significance

of the implications, cancer prediction has seen an increase

of interest in recent years. Researchers are applying deep

learning models such as VAEs to develop accurate models

for predicting cancer. Since the VAE is so adept at selecting

prominent features from a given data set, there have been

several studies which link the VAE with cancer datasets. One

type of study has been used to capture biological features from

the TCGA Pan-cancer Project RNA-sequence data set to model

gene expression [3]. In this paper the learned features of the

authors VAE found tissue specific patterns that were able to

distinguish between the 33 cancer types in the dataset. The

pattern proved that an unsupervised VAE is able to construct

a feature that described a clearly biological source of variance

in the data. Our VAE will similarly learn the features of our

dataset, however our VAE will not be differentiating between

cancer types. We will train our model with just blood cell

cancer, and aim to have our biological source of variance be

related to the shape of the blood cell. Another type of study

was to predict the growth of a lung tumor over time using a

Conditional recurrent VAE [4]. In this paper the authors weight

time and patient conditions as well as extracted features to

create the generated tumor image. By doing this, the VAE

will become more personalized to the patient and is able to

bypass the issue of having a small dataset. This is important

to note for our model because we could incorporate time

as a factor for our generated image in future use of our

model. Another type of study was to predict the chemotherapy

resistance of the cells using VAE [5]. In this paper the

authors trained a VAE on a dataset of ovarion cancer cells,

and experimented with several different hyperparameters. The

results of the paper showed that their VAE is highly robust

to cancer data contaminated with large amounts of Gaussian

and dropout noise noise through reparameterization, however

they did not have enough data to statistically show that the

reparameterization was consistently improving the VAE. Our

model will be utilizing reparameterization in a similar way,

however our model will use temperature and bias to reperam-

eterize. Similarly to the efforts of previous works to model

the prominent features of the cancer cells and their response

to treatment, our model will attempt to predict how benign

cells will appear malignantly. Our model will also address the

vanishing gradient problem with reparameterization. In this

paper [2], the authors proved that using reparameteriation leads

to quicker convergence during backpropogation. In our paper

we will test how different reparametirizations will affect the

features picked up when our VAE turns a benign blood cancer

cell malignant. These works have demonstrated the advantages

of using VAEs to extract meaningful features from various

cancer datasets. Furthermore, the use of VAEs with diverse

data sources has given improved predictive performance of

cancerous cells. These works have also demonstrated that it is

effective to use reparameterization in order to refine your latent

space. This is specifically applicable to our model, where we

use reparameterization to extract the shape of malignant cell

as a feature. That feature will then be applied to the generated

malignant image of the benign input.

III. METHODOLOGY

A. Data Set

The data set [6] comprised of images of peripheral blood

smear images of blood cells. The set contains 512 images

of benign cells and 979 images of early Pre-B malignant

cells. The malignancies are classified as acute lymphoblastic

leukemia, and malignancies other than early Pre-B are present

in the data set but were not used.In 2, you can see some sample

images of the benign and malignant smears in their original

format. These images are .jpg filetype with original dimensions

of 1024× 768.

B. Data Preparation

For preperation of the images for use in the VAE model,

we first began by resizing the images to 256× 256 using the

BILINEAR method in python. Images were then inputted into
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Benign Malignant early Pre-B

Fig. 2: Peripheral Blood Smear Images

numpy arrays and normalized, and then were split into training

and testing sets. The split for this was 70% training and 30%

testing. The batch size used for training was 32 images per

batch.

C. Architecture

In our work, our constructed VAE had four Conv2D layers

in the encoder. Each of these convulution layers used a

kernel size of 3, strides of 2 × 2, and LeakyReLU activation

functions. The filters on each layer were 32, 64, 128, and 256

as passing through the encoder. Then, our latent space had

dimesion of 128. The decoding layer of our model had four

Conv2DTranspose layers with the same kernel, stride, and

activation function as the encoder. This layer constructed the

new 256× 256 image from the latent space parameters.

D. Loss Function

The loss function comprised of two parts, the latent loss,

or KL-Divergence Loss [1] as well as the generative loss. The

total loss was these two combined. The Kullback Leibler (KL)-

Divergence can be calculated as follows: KL:=

1

2

J∑
j=1

(1+log(σ
(i)
j )2))

1

2

J∑
j=1

(1+log(σ
(i)
j )2))−((µ

(i)
j ))2−((σ

(i)
j ))2

where Xj ∼ N(µj , σ
2
j ) is the standard normal distribution [7]

[1]. The KL-Divergence plays an important role in calculating

the loss. Given a probability distribution z, to generate an ob-

servation x from it, we would calculate p(z|x) = p(x|z)p(z)
p(x)

from Bayes. To then get p(x) in our case is more difficult,

as p(x) =
∫
p(x|z)p(z)dz which often is intractable either

computationally, or has no closed form and is thus also

intractable [7]. To fix this problem, we estimate this integral by

minimizing the KL-Divergence between the two probabilities

[7]. Our estimate is given as min(KL(q(z|x)||p(z))) where q

is the output/learned distribution space. Then, if L(x, x̂) is the

maximum-likelihood estimate for the reconstruction, we have

that Loss = L(x, x̂) +
∑

j KL(qj(z|x)||p(z)) [1].

IV. EXPERIMENTS

A. Temperature

After proposing some select hyper parameters known to

effect the distribution of a VAE’s latent space during training,

evaluation of the trained model’s ability to generate images

of malignant preB blood cells given an input of benign

blood cells. Training was done for 300 epochs during each

evaluation, with training data being composed entirely of

malignant preB images in order to extract their features. A

benign blood cell image was then provided for input, and

the output was visually inspected to determine its quality.

Among the hyper parameters evaluated, temperature stood out

as the one that helped generate the most desirable results.

After it was determined that temperature had the greatest effect

on our results, different values of temperature were tested

to explore temperature’s overall effect. The value of 0.001

was the smallest selected value for temperature. Differing

temperature increments were tested by increasing the previous

temperature by a factor of 10.

Fig. 3: Input vs. Output for Temperature of 0.001

After observing the input and output of cells based on our

initial temperature, we observed that our VAE did not achieve
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the desired effect. The general shape of each cell remains

relatively smooth and circular, unlike our training data images

featuring malignant preB cells. The general appearance of the

output indicated that 0.001 was not a sufficient temperature

to generate quality results. Although this result doesn’t aid in

the creation of blood cells that appear to look malignant, this

behavior can be explained because of how temperature func-

tions. A temperature closer to 0 signifies that the distribution

of latent vectors is closer together, meaning generated images

will have a more stable appearance. However, as temperature

increases, we expect the output of our images to appear more

unstable for our cancer cells.

Fig. 4: Input vs. Output for Temperature of 1

By closely examining the appearance of the output in

figure 2, slight abnormalities on the edges of cells started

being observed at a temperature equal to 1. This temperature

displays behavior equivalent to the default behavior of our

VAE, because our temperature is a scalar that performs multi-

plication within our reparameterization function. The result

being generated when our temperature is 1 indicates that

the VAE model being used is able to extract some of the

visual attributes of malignant preB cell images, because the

output has some slight cell shape abnormalities. However, the

abnormalities being generated were difficult to observe. We

predicted that as temperature continued to increase, we would

see more significant results.

After evaluating the output of generated images for temper-

atures greater than 10, such as 100 and 1000, images started

Fig. 5: Input vs. Output for Temperature of 10

displaying results inconsistent with that of malignant preB

cells, displaying an appearance similar to that of a benign cell

image. One possible explanation for this is because the added

randomness at higher temperatures is allowing the model to

explore a wider range of latent vectors that are closer to the

latent vectors of the original cells. At higher temperatures, the

VAE is more likely to generate samples that are further away

from the mean of the learned distribution in the latent space.

This increased variability can allow the model to explore latent

vectors that are closer to the latent vectors of the original cells

that it was trained on. As a result, the generated images may

more closely resemble the original cells.

B. Introducing Bias

In addition to the hyper parameter temperature, bias was

another changed considered for modifying the parameteriza-

tion function. Although bias did not have a significant impact

on our results by itself, it was possible that combining it with

temperature could yield more notable outputs by influencing

the sampling process to bias the generated samples towards

characteristics that are consistent with malignant preB cells.

In order to evaluate this, temperature was kept constant at a

value of 10, and various levels of bias were introduced, starting

at 0.1 and tested at various increments by a factor of 10.

Using a bias of 0.1 had little impact on the output, but

by observing the differences between figure 3 and figure 4,

it can be noted that when a bias of 1 was used, the edges

of neighboring cells in the output was generally more sharp
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Fig. 6: Input vs. Output for Temperature of 10 + Bias of 1

compared to the output without bias, while maintaining the

desired abnormal cell shape. In this case, the bias term of

1 caused the latent vectors to become more biased towards

values that result in sharper borders for the generated images.

After a bias of 10 was used, results similar to when the bias

was equal to 1 were generated. After bias values of 100 and

1000 were used for image generation, the overall quality of

the generated images began to decline significantly, which can

be seen in Figure 5.

Fig. 7: Input vs. Output for Temperature of 10 + Bias of 1000

From our results, it can be reasonably determined that biases

of 1 and 10 led to better image generation because it created

a good balance between the diversity of the latent vector

distribution and fidelity of our input. However, a bias of 1000

is too large, which led to samples that were too diverse and

therefore unfaithful to the true distribution.

C. Evaluating Results

Based on these findings, there is something to be said

about the latent distribution of our VAE with respect to both

temperature and bias. For this data set, it was determined that a

relatively high degree of randomness helped our model utilize

a latent space distribution that reflected the characteristics of a

malignant preB cell. In nature, the appearance of these cells is

often random, which needs to be considered if we are trying

to recreate this effect with image generation. Not only will

a higher temperature help reflect the biological mechanics of

cells, but a high temperature will also help with overfitting

by ensuring our VAE will not repeatedly create the same

image. Additionally, there are many different characteristics

of malignant preB images that could be selected from our

latent space, some of which may be unnecessary for our task.

Because of this, the optimal bias has been extremely helpful

for accessing the features that matter most. Although the

impact that temperature and bias has had on image generation

has only been explored with the data set we used, it is

possible that the values identified as helpful for this data

set could be used on similar data sets. Cells are not man

made, so they do not possess the predictability of human

designs. As it can be seen from the inputs and outputs of these

experiments, cells have highly varied sizes, perimeters, and

spacial distributions. Because of this, cell image generation

will most likely benefit from very particular hyper parameters.

The hyper parameters explored in these experiments are a

select few from the many possible choices that could have

been made, so it is important not to disregard them. It will

take time to thoroughly consider which mathematical functions

would be relevant for the reparameterization function of a

VAE, however, experiments evaluating the effectiveness of

VAE image generation should put more focus into what parts

of the reparameterization function can be modified, because

of the crucial role it plays in creating the output.
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V. CONCLUSION

Our model is promising, however the reparameterization

needs to be more fine tuned in order to truly optimize the

latent space distribution for feature extraction of the malignant

blood cells. We observed that a mixture of both temperature

and bias in the parameterization function resulted in the output

that was most consistent with the abnormalities of malignant

preB blood cells.

A. Future Work

Since the model trained off of the features of malignant

cells, it would be beneficial to experiment with multiple

different dropout rates in the future to see if we can reduce

over fitting of the model. In the future it would be important to

train the VAE on several stages of blood cancer malignancies,

such as proB and early preB. This would be beneficial because

it is more applicable to a real life situation. Someone would

be able to compare the generated malignant blood cell to the

input blood cell through multiple stages, instead of just the

preB we trained the model on.
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