
Applications of Group Theory and Abstract
Algebra to Cryptography

Joey Peeters
Chris Brantner

Math 425
April 30, 2023

Abstract

An overview of different methods in cryptography and how they
relate to abstract algebra. We will investigate error-correction through
use of Reed-Solomon codes, as well as cryptographic methods for secure
information transfer. Security methods include Diffie-Hellman key ex-
change and RSA encryption. We then investigate the impact of Quantum
Computers to the future of cryptography, looking at a possible method
of encryption involving lattices.

Introduction

Many topics in computer science rely heavily on abstraction, generalizing
complex concepts into more broad features. The use of abstraction is observ-
able within most areas of computing; from abstraction of analogue signals into
discrete, then applying a binary system to represent these signals, then using
Boolean logic to perform arithmetic and logical operations which underlie all
the architecture of modern software development. From machine learning to
operating systems to web page development, abstraction is a powerful tool
which computer science relies upon. Given the pervasiveness of abstraction in
the field, it should come as no surprise that abstract algebra has a wide variety
of applications. In this, we narrow our focus to applications in cryptography.

Generally, cryptography is about encoding messages. From Scientific Amer-
ican in 1866, it is “the art of reading and writing dispatches, messages, etc., in
such a way that only those who possess the key can decipher them.” (Scien-
tific American). This is a rather broad definition, and has evolved over time
to include encoding information for reasons other than secrecy, as was the

1

origin of cryptography. The broad patterns used to encode information will
be examined through the lens of the mathematics which make them possible.
In this, we will look at two general problems: data storage integrity and com-
munications security.

Beginning with the problem of data integrity, the underlying problem is
transfer of information. When information is transmitted across a channel
there is always risk of the information becoming corrupted and damaged. The
goal of error correction is twofold; recognize when an error has occurred, and
correct the error. While the general problem is simple, the solutions we desire
are those which minimize computational overhead. The simplest solution, of
course, would be to simply transmit the information multiple times. Then,
each could be checked against the others to correct any errors. However, this
is extremely computationally inefficient, as we are increasing our information
length by many-fold. It is this trade off between overhead and ability to correct
errors which codes seek to find a balance in.

Code Definitions

According to Judy Walker, group theory and combinatorics are the tradi-
tional tools of math for studying codes, while more recently algebraic geometry
has made a big impact on the field (Walker 3). Before delving into details
about types of codes, a background on the jargon associated with them is
important.

Formally, a code C over an alphabet A is simply a subset of An := A × · · · ×
A(n copies). (Walker). Notice that a code here is defined as a set. Elements
of this set are called codewords, usually denoted with a lowercase c, and a
codeword’s length is usually denoted by n. Often, the alphabet of interest
is a finite field. A code C is said to be linear if Cis a vector subspace of An.
(Walker). The dimension of a code, k, is another useful parameter to talk
about, and is an important variable when calculating metrics of a code. The
dimension is the dimension of the vector space over the alphabet.

Metrics

When talking about codes generally, it is important to establish some metrics
with which we can compare the efficacy of codes. The general goal of error
correction is to find a balance between overhead (the length added to the orig-
inal message) with utility (ability to find and correct errors). One important
feature besides dimension is the minimum distance of a code, denoted d.

Minimum distance is defined as elements of the code which are not equal
to each other. Abstractly, the goal is to have two “points” (codewords of the
code) which are “far enough away” in a sense to be useful. If two codewords
are “close”, then their ability to correct errors is limited. This is how minimum
distance comes to be useful as a metric. Distances here are not defined in terms

2

Figure 1: Representation of distance, courtesy of Rex Wang

of Euclidean distance, but rather as a more abstract metric space (Wootters).
Again, the usefulness of abstraction in this field can not be overstated. In the
above example, we can see an illustration of the Hamming distance of a code,

the floor of
d − 1

2
as illustration of how points are “far enough away”.

Another useful metric is the information rate, R =
k
n

where k is the dimen-

sion and n is the code length (Walker) . Equivalently, this is
logalphabet |C|

n
(Wooters).

More metrics are defined for codes, and are useful in establishing bounds on
performance. This allows for quantifying how well a code can possibly work
for recovery. Beyond the need for metrics, we also need metrics for efficiency
in the encoding and decoding algorithms of a code. Complexity analysis is an
entire branch of computer science on its own, and will not be covered here.

Reed-Solomon Codes

Armed with the lexical necessities to talk of linear codes, we can now delve
into the world of Reed-Solomon codes. Reed-Solomon codes rely on a useful
property of polynomials that low degree polynomials do not have too many
roots. That is, a nonzero univariate polynomial of at most degree a has at most
a roots (Wooters). This ensures that the distance of our code will be acceptable.
The points of interest will be compiled into what’s known as an evaluation
set, consisting of points with which we can recover local information about
our original message.

Reed-Solomon codes are defined over a finite field of order q, denoted
Fq. Then, the Reed-Solomon code with dimension k defined over Fq with
q ≤ n ≤ k and evaluation points ᾱ(α1, α2 . . . αn) is defined as RSq(ᾱ, n, k) :=
(f (α1), f (α2), . . . , f (αn))| f ∈ Fq[X], deg(f) ≤ k − 1 (Walker). As inputs, the
code takes in the evaluation set, code length, and dimension of the code. The
points in the evaluation set are then mapped to polynomials in Fq[X] such that
the degree of each polynomial does not exceed one less than the dimension

3

of the code. This describes a natural encoding map, upon which algorithms
can be made, that takes points to polynomials. While the theory behind these
codes was proposed in the 1960s, there were no algorithms to implement these
codes until many years later (Wootters). This is a good example of how often
a pure mathematical concept can later translate to useful applications, even
when it’s unknown at the time of the concepts inception how this could work.
Further, it’s demonstrative of the powers of abstraction, and how abstract
algebra has been useful to cryptography.

Today, Reed-Solomon codes are in use in many data storage methods. Their
low overhead combined with their quick encoding algorithms make for an
effective tool to recover errors generated in data transmission across channels.
Abstraction in cryptography makes heavy use of concepts in abstract algebra,
such as finite fields, mappings between sets, and linearity.

Information Transfer Security

Moving from the sphere of data integrity, another main branch (perhaps
more well known of the two) of cryptography deals with information security
across channels. The need to securely communicate was the original motiva-
tion behind cryptography and predates the invention of the computer by a fair
amount. The field began as ciphers, or encryptions of messages, to obfuscate
message contents from prying eyes. From the Caesar cipher to the Enigma
Machine, mathematics is a tool which can be used to better understand how
to make useful encryptions (Singh).

One such type of encryption involves the use of what are known as “public
keys”. This is a model in which two end users want to transfer information
across a channel with potential adversaries. To do so securely, users must pass
only encrypted information in the channel, so as to prevent adversarial agents
from intercepting sensitive information. Here, a “public key” is employed to
aid in this. We will discuss the Diffie-Hellman method, in which the public
key model is employed (Koblitz et al.).

Diffie-Hellman Key Exchange

In this protocol, two end users have their own private “key”, a string of binary
code. The goal is to verify that each user is legitimate without giving away
their own private key. This is achieved using public key exchange, in which
each user combines their private key with a public one, and the other user
is able to verify, mathematically, that the other is legitimate. The original
implementation of this is one which uses the multiplicative group of integers
modulo p, where p is prime. In this, p is public, as well as a base g. These are
the public codes, available to anybody.

As an example, say two users have private keys a and b. They want to verify
that the other’s is legitimate. The way they do this, is user A would combine

4

ga (mod p) and send that to user B. Similarly, B would combine gb (mod p)
and send that to user A. Then, user A would take the gb they received, and
take it to their secret code a, resulting in (gb)a, and B would take the ga they
received as (ga)b. Then, they would verify that these two values match, as
(ga mod p)b = (gb mod p)a. The result is they have a shared encryption key
without ever giving away their private keys. The strength of this is that it is
incredibly computationally difficult (near impossible) to figure out what a and
b are given only g, ga, gb, and p (Meijer).

Generally, this relies on group theory, specifically finite cyclic groups. If G is
a finite cyclic group of order n, then two users agree upon n, a natural number,
and g, a generating element of G. One user picks their secret key, a, between
1 and n. The other user picks their secret key b, between 1 and n. Then,
each sends ga, gb to the other. Then, they commute (gb)a, (ga)b respectively.
Now, they both have a common key without giving away publicly their secret
key. This can be applied over any finite cyclic group with varying degrees of
security. These keys are very long in length to make decryption by guessing
highly unlikely and computationally time consuming.

Problems Arising from Quantum Computing

Going through all these forms of cryptography are great for sending mes-
sages along that you do not want to be encoded by someone these messages
aren’t meant for. A problem posed to cryptography that drives the field to
keep pushing are quantum computers. These quantum computers are poten-
tially able to solve classic cryptographic methods much more efficiently than
a classic computer because of Shor’s algorithm. Shor’s algorithm is based
on using quantum Fourier transformations to factor down a number more
efficiently (Politi). These computers are able to factor large numbers and find
discrete logarithms at a much quicker pace because of this algorithm.

Intro to Quantum Computers

Quantum computers are a type of computer that use quantum mechanical
phenomena, such as superposition and entanglement, to perform operations
on data. Unlike classical computers, which use bits that can be either 0 or 1,
quantum computers use quantum bits, or qubits, which can be in a superposi-
tion of both 0 and 1 at the same time. For a clear example of this, a classical
computer can represent 0 − 255 by eight bits, whereas a quantum computer
is able to do the same 256 with eight qubits (J. Cheng). This allows quantum
computers to perform certain calculations much faster than classical comput-
ers, particularly in areas such as cryptography, optimization, and simulation.
However, building and operating quantum computers is challenging due to
the fragility of qubits and the need for precise control and isolation from the
environment.

5

Summarizing quantum computers, we see that this new advance in technol-
ogy is able to solve some of our pre-existing encoding techniques and offers a
more efficient route than classical computers. The only problem in the way of
these operating systems is the fact that they are not available commercially.
These computers still are in the process of needing more stable qubits, better
control systems and improved error correction. (RF Wireless World)

Figure 2: Classical bit vs. Quantum bit courtesy of www.rfwireless-world.com

Lattice-Based Cryptographic Problems

After reviewing the risk that quantum computers pose to breaking many
pre-existing cryptographic protocols, we’re now able to take a look into lattice-
based cryptography. The alternative mathematical problems provided from
lattice-based cryptography include the Shortest Vector Problem (SVP) and the
Learning with Errors (LWE) problem. These two problems are what makes
this type of cryptography one of the strongest against quantum computers.
SVP is one of the most well-known studied lattice problems in cryptography.
The main point of SVP is to find the shortest nonzero vector in a given lattice
where a classical computer would have issues solving for how large the in-
stance is (Daniele). This is known as a “hard” problem in the field since you
would need another piece of information (what is reasonably orthogonal to a
vector) and using a linear combination in order to find this shortest vector.

Lattice-based cryptography uses the hardness of SVP to design crypto-
graphic schemes that are believed to be secure against classical and quantum
computers. For example, the LWE problem is a generalization of SVP, where
the vector is not exactly in the lattice but perturbed by some noise.In the LWE
problem, a set of linear equations is formed where the variables are integers
modulo some large number q, and the coefficients are chosen from a small set
of random values (Regev). However, a small amount of "error" is added to the
equations by randomly perturbing the coefficients. The task is to solve for the

6

variables given the equations with errors.

The LWE problem is important in cryptography because it provides a way
to create secure and efficient public-key encryption schemes, key exchange
protocols, and digital signature schemes. These schemes have several advan-
tages over traditional cryptography methods like RSA, including resistance to
quantum attacks and smaller key sizes, which makes them more efficient to
use in practice.

Conclusion

Cryptography is a fascinating field of study that has played a critical role
in securing information transmission over the internet, as well as preserving
data in storage. Reed-Solomon codes are a type of error-correcting code that
is able to detect and correct errors in data transmission. A large branch of
cryptography deals with information transfer over unsecured channels, which
Diffie-Hellman key exchange helps to mediate. Abstract algebra plays a sig-
nificant role in cryptography, particularly in the development of lattice-based
cryptography as of late. These studies are being pushed due to the risk quan-
tum computers now impose on classical cryptography. While cryptographic
problems are challenging, abstract algebra and other branches of mathematics
offer insight as to how to tackle these problems, and re-framing a question
using abstraction is what has brought forth much of the technology we use
today.

7

Works Cited

Daniele Micciancio. (n.d.). Shortest Vector Problem (SVP). Retrieved April 30,
2023, from https://cseweb.ucsd.edu/ daniele/LatticeLinks/SVP.html

D’Anvers, Jan-Pieter. “CO6GC: Introduction to Lattice-Based Cryptography
(Part 2): Lwe Encryption.” COSIC, 8 June 2022

Politi, A., Matthews, J. C. F., and O’Brien, J. L. (2009). Shor’s quantum factor-
ing algorithm on a photonic chip. Science, 325(5945), 1221. https://doi.org/10.1126/science.1173731

J. Cheng, Y. Xie, Y. Shi, X. Liu, Z. Wang, "Secure decentralized access control
for blockchain-based medical data sharing with privacy protection," Expert
Systems with Applications, vol. 190, p. 114984, 2022. doi: 10.1016/j.eswa.2022.114984.

Regev, Oded. "Learning with errors, twenty years later." Journal of the ACM
(JACM) 65, no. 6 (2018): 38. https://cims.nyu.edu/ regev/papers/lwesurvey.pdf

RF Wireless World. (n.d.). Difference between bit and qubit. Retrieved April
30, 2023, from https://www.rfwireless-world.com/Terminology/Difference-
between-Bit-and-Qubit.html

Wootters, Mary, director. Algebraic Coding Theory, 30 Mar. 2021, https://youtu.be/yQkEnd
e2lNg. Accessed 20 Apr. 2023.

Singh, Simon. “The History of Cryptography: How the History of Code-
breaking Can Be Used in the Mathemathics Classroom with Resources on a
New CD-ROM.” Mathematics in School, vol. 32, no. 1, 2003, pp. 2–6. JSTOR,
http://www.jstor.org/stable/30212224. Accessed 1 May 2023.

Meijer, A. R. “Groups, Factoring, and Cryptography.” Mathematics Maga-
zine, vol. 69, no. 2, 1996, pp. 103–09. JSTOR, http://www.jstor.org/stable/2690663.
Accessed 1 May 2023.

Walker, Judy. “Codes and Curves.” The Student Mathematical Library, 2000,
https://doi.org/10.1090/stml/007. Accessed 20 Apr. 2023.

“CRYPTOGRAPHY.” Scientific American, vol. 14, no. 19, 1866, pp. 295–96.
JSTOR, http://www.jstor.org/stable/24974248. Accessed 30 Apr. 2023.

Wang, Rex. “Distance.” JuliaLang.org, 26 Nov. 2022, https://forem.julialang.org/rexwzh/coder-
decoder-for-qr-codes-ospp22-work-product-3gn4. Accessed 20 Apr. 2023.

Koblitz, Neal, and Alfred J. Menezes. “A Survey of Public-Key Cryptosys-
tems.” SIAM Review, vol. 46, no. 4, 2004, pp. 599–634. JSTOR, http://www.jstor.org/stable/20453567.

8

